Towards Self-Organized Anodization of Aluminum in Malic Acid Solutions—New Aspects of Anodization in the Organic Acid
نویسندگان
چکیده
منابع مشابه
1. Aluminum anodization
The history of electrochemical oxidation of aluminum dates back to the beginning of the last century. Anodic treatment of aluminum were intensively investigated to obtain protective and decorative films on its surface [1]. More recently, applications of porous alumina with a huge surface area and a relatively narrow pore size distribution have been exploited [2]. For example, several attempts t...
متن کاملThe Anodization of Aluminum for Nanotechnology Applications
This article is an introduction to anodization of aluminum, which is a subject of electrochemistry. Anodization of aluminum under a controlled electrochemical condition yields ordered porous alumina with a close-packed hexagonal array of cylindrical nanochannels. The diameter, density, and aspect ratio of pores can be tightly controlled by varying the anodization condition, which makes the poro...
متن کاملFormation of self-organized Zircaloy-4 oxide nanotubes in organic viscous electrolyte via anodization
This work reports the formation of self-organized Zircaloy-4 (Zr-4) oxide nanotubes in viscous organic ethylene glycol (EG) electrolyte containing a small amount of fluoride salt and deionized (DI) water via an electrochemical anodization. The structure, morphology, and composition of the Zr-4 oxide nanotubes were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), transm...
متن کاملSelf-ordered anodic aluminum oxide formed by H2SO4 hard anodization.
The self-ordering of nanoporous anodic aluminum oxide (AAO) in the course of the hard anodization (HA) of aluminum in sulfuric acid (H2SO4) solutions at anodization voltages ranging from 27 to 80 V was investigated. Direct H2SO4-HA yielded AAOs with hexagonal pore arrays having interpore distances D(int) ranging from 72 to 145 nm. However, the AAOs were mechanically unstable and cracks formed a...
متن کاملFabrication of Self-Ordered Alumina Films with Large Interpore Distance by Janus Anodization in Citric Acid
Self-organized porous anodic alumina (PAA) formed by electrochemical anodization have become a fundamental tool to develop various functional nanomaterials. However, it is still a great challenge to break the interpore distance (Dint) limit (500 nm) by using current anodization technologies of mild anodization (MA) and hard anodization (HA). Here, we reported a new anodization mode named "Janus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials
سال: 2020
ISSN: 1996-1944
DOI: 10.3390/ma13173899